Add like
Add dislike
Add to saved papers

MicroRNA-133b Dysregulation in a Mouse Model of Cervical Contusion Injury.

Our previous research studies have demonstrated the role of microRNA133b (miR133b) in healing the contused spinal cord when administered either intranasally or intravenously 24 h following an injury. While our data showed beneficial effects of exogenous miR133b delivered within hours of a spinal cord injury (SCI), the kinetics of endogenous miR133b levels in the contused spinal cord and rostral/caudal segments of the injury were not fully investigated. In this study, we examined the miR133b dysregulation in a mouse model of moderate unilateral contusion injury at the fifth cervical (C5) level. Between 30 min and 7 days post-injury, mice were euthanized and tissues were collected from different areas of the spinal cord, ipsilateral and contralateral prefrontal motor cortices, and off-targets such as lung and spleen. The endogenous level of miR133b was determined by RT-qPCR. We found that after SCI, (a) most changes in miR133b level were restricted to the injured area with very limited alterations in the rostral and caudal parts relative to the injury site, (b) acute changes in the endogenous levels were predominantly specific to the lesion site with delayed miR133b changes in the motor cortex, and (c) ipsilateral and contralateral hemispheres responded differently to unilateral SCI. Our results suggest that the therapeutic window for exogenous miR133b therapy begins earlier than 24 h post-injury and potentially lasts longer than 7 days.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app