Add like
Add dislike
Add to saved papers

A Mass Spectrometry-Based Proteome Study of Twin Pairs Discordant for Incident Acute Myocardial Infarction within Three Years after Blood Sampling Suggests Novel Biomarkers.

Acute myocardial infarction (AMI) is a major cause of mortality and morbidity worldwide, yet biomarkers for AMI in the short- or medium-term are lacking. We apply the discordant twin pair design, reducing genetic and environmental confounding, by linking nationwide registry data on AMI diagnoses to a survey of 12,349 twins, thereby identifying 39 twin pairs (48-79 years) discordant for their first-ever AMI within three years after blood sampling. Mass spectrometry of blood plasma identified 715 proteins. Among 363 proteins with a call rate > 50%, imputation and stratified Cox regression analysis revealed seven significant proteins (FDR < 0.05): FGD6, MCAM, and PIK3CB reflected an increased level in AMI twins relative to their non-AMI co-twins (HR > 1), while LBP, IGHV3-15, C1RL, and APOC4 reflected a decreased level in AMI twins relative to their non-AMI co-twins (HR < 1). Additional 50 proteins were nominally significant ( p < 0.05), and bioinformatics analyses of all 57 proteins revealed biology within hemostasis, coagulation cascades, the immune system, and the extracellular matrix. A protein-protein-interaction network revealed Fibronectin 1 as a central hub. Finally, technical validation confirmed MCAM, LBP, C1RL, and APOC3. We put forward novel biomarkers for incident AMI, a part of the proteome field where markers are surprisingly rare and where additional studies are highly needed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app