Journal Article
Review
Add like
Add dislike
Add to saved papers

Effect of Steel Fibers on Tensile Properties of Ultra-High-Performance Concrete: A Review.

Materials 2024 Februrary 29
Ultra-high-performance concrete (UHPC) is an advanced cement-based material with excellent mechanical properties and durability. However, with the improvement of UHPC's compressive properties, its insufficient tensile properties have gradually attracted attention. This paper reviews the tensile properties of steel fibers in UHPC. The purpose is to summarize the existing research and to provide guidance for future research. The relevant papers were retrieved through three commonly used experimental methods for UHPC tensile properties (the direct tensile test, flexural test, and splitting test), and classified according to the content, length, type, and combination of the steel fibers. The results show that the direct tensile test can better reflect the true tensile strength of UHPC materials. The tensile properties of UHPC are not only related to the content, shape, length, and hybrids of the steel fibers, but also to the composition of the UHPC matrix, the orientation of the fibers, and the geometric dimensions of the specimen. The improvement of the tensile properties of the steel fiber combinations depends on the effectiveness of the synergy between the fibers. Additionally, digital image correlation (DIC) technology is mainly used for crack propagation in UHPC. The analysis of the post-crack phase of UHPC is facilitated. Theoretical models and empirical formulas for tensile properties can further deepen the understanding of UHPC tensile properties and provide suggestions for future research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app