Add like
Add dislike
Add to saved papers

The Mechanical Properties and Microstructure of Tailing Recycled Aggregate Concrete.

Materials 2024 Februrary 26
The aim of this study was to develop sustainable concrete by recycling concrete aggregates from steel waste and construction waste (iron ore tailings (IOTs) and recycled coarse aggregates (RCAs)) to replace silica sand and natural coarse aggregates. In experimental testing, the compressive strength, peak strain, elastic modulus, energy dissipated under compression, and compressive stress-strain curve were analyzed. Microscopically, scanning electron microscopy and energy-dispersive spectrometry were employed to investigate the microstructural characteristics of the interfacial transition zone (ITZ), and the results were compared with the ITZs of natural aggregate concrete and recycled aggregate concrete (RAC). In addition, the pore structure of concrete was determined by nuclear magnetic resonance. The results revealed that an appropriate IOT content can improve the ITZ and compactness of RAC, as well as optimize the mechanical and deformation properties of RAC. However, due to the presence of a smaller number of microcracks on the surface of IOT particles, excessive IOTs could reduce the integrity of the matrix structure and weaken the strength of concrete. According to the research, replacing silica sand with 30% IOTs led to a reduction in the porosity and microcracking which resulted in a much denser microstructure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app