Add like
Add dislike
Add to saved papers

NiTi-Cu Bimetallic Structure Fabrication through Wire Arc Additive Manufacturing.

Materials 2024 Februrary 23
This study endeavors to comprehensively explore and elucidate the seamless integration of NiTi shape memory alloys (SMAs) into multifaceted applications through the utilization of novel joining techniques. The primary focus lies in the utilization of wire arc additive manufacturing (WAAM) to deposit Nitinol (NiTi) onto Copper (Cu), thereby introducing a transformative approach for their integration into electro-mechanical systems and beyond. Through a detailed examination of the NiTi/Cu bimetallic junction, using advanced analytical techniques including SEM, XRD, and DSC analyses, this research aims to unravel the intricate complexities inherent within the interface. The SEM images and X-ray patterns obtained reveal a complex and nuanced interface characterized by a broad mixed zone comprising various constituents, including Ti(Ni,Cu)2 , pure Cu, Ti2 (Ni,Cu)3 precipitates, and Ni-rich NiTi precipitates. The DSC results, showcasing low-intensity broad peaks during thermal cycling, underscore the inherent challenges in demonstrating functional properties within the NiTi/Cu system. Recognizing the critical importance of an enhanced martensitic transformation, this study delves into the effects of heat treatment. Calorimetric curves post-annealing at 500 °C exhibit distinct transformation peaks, shedding light on the intricate influence of NiTi layer distribution within the junction. The optimal heat treatment parameters for NiTi/Cu junction restoration are meticulously explored and determined at 500 °C for a duration of 12 h. Furthermore, the study offers valuable insights into optimizing NiTi-Cu joints, with micro-hardness values reaching 485 HV and compressive strength scaling up to 650 MPa. These significant findings not only hold promise for diverse applications across various industries but also pave the way for further research directions and explorations into the realm of SMA integration and advanced joining methodologies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app