Journal Article
Review
Add like
Add dislike
Add to saved papers

A Review: Biomechanical Aspects of the Fallopian Tube Relevant to its Function in Fertility.

Reproductive Sciences 2024 March 13
The fallopian tube (FT) plays a crucial role in the reproductive process by providing an ideal biomechanical and biochemical environment for fertilization and early embryo development. Despite its importance, the biomechanical functions of the FT that originate from its morphological aspects, and ultrastructural aspects, as well as the mechanical properties of FT, have not been studied nor used sufficiently, which limits the understanding of fertilization, mechanotrasduction, and mechanobiology during embryo development, as well as the replication of the FT in laboratory settings for infertility treatments. This paper reviews and revives valuable information on human FT reported in medical literature in the past five decades relevant to the biomechanical aspects of FT. In this review, we summarized the current state of knowledge concerning the morphological, ultrastructural aspects, and mechanical properties of the human FT. We also investigate the potential arising from a thorough consideration of the biomechanical functions and exploring often neglected mechanical aspects. Our investigation encompasses both macroscopic measurements (such as length, diameter, and thickness) and microscopic measurements (including the height of epithelial cells, the percentage of ciliated cells, cilia structure, and ciliary beat frequency). Our primary focus has been on healthy women of reproductive age. We have examined various measurement techniques, encompassing conventional metrology, 2D histological data as well as new spatial measurement techniques such as micro-CT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app