Add like
Add dislike
Add to saved papers

Electrochemical determination of ascorbic acid using palladium supported on N-doped graphene quantum dot modified electrode.

Scientific Reports 2024 March 13
To precise screening concentration of ascorbic acid (AA), a novel electrochemical sensor was prepared using palladium nanoparticles decorated on nitrogen-doped graphene quantum dot modified glassy carbon electrode (PdNPs@N-GQD/GCE). For this purpose, nitrogen doped GQD nanoparticles (N-GQD) were synthesized from a citric acid condensation reaction in the presence of ethylenediamine and subsequently modified by palladium nanoparticles (PdNPs). The electrochemical behavior of AA was investigated, in which the oxidation peak appeared at 0 V related to the AA oxidation. Considering the synergistic effect of Pd nanoparticles as an active electrocatalyst, and N-GQD as an electron transfer accelerator and electrocatalytic activity improving agent, PdNPs@N-GQD hybrid materials showed excellent activity in the direct oxidation of AA. In the optimal conditions, the voltammetric response was linear in the range from 30 to 700 nM and the detection limit was calculated to be 23 nM. The validity and the efficiency of the proposed sensor were successfully tested and confirmed by measuring AA in real samples of chewing tablets, and fruit juice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app