Add like
Add dislike
Add to saved papers

Screening by Q Exactive liquid chromatography/tandem mass spectrometry identified Choline, 25-hydroxyvitamin D2, and SM(d18:0/16:1(9Z) (OH)) as biomarkers for high-grade serous ovarian cancer.

Journal of Proteomics 2024 March 11
High-grade serous ovarian cancer (HGSOC) has a high death rate and poor prognosis. The main causes of poor prognosis are asymptomatic early disease, no effective screening method at present, and advanced disease. Changes in cellular metabolism are characteristic of cancer, and plasma metabolome analysis can be used to identify biomarkers. In this study, we used Q Exactive liquid chromatography tandem mass spectrometry (LC-MS/MS, QE) to compare the differentiation between plasma samples (22 HGSOC samples and 22 normal samples). In total, we detected 124 metabolites, and an orthogonal partial least-squares-discriminant analysis (OPLS-DA) model was useful to distinguish HGSOC patients from healthy controls. Choline, 25-hydroxyvitamin D2, and sphingomyelin (d18:0/16:1(9Z) (OH))/SM(d18:0/16:1(9Z) (OH)) showed significantly differential plasma levels in HGSOC patients under the conditions of variable importance in projection (VIP) > 1, p < 0.05 using Student's t-test, and fold change (FC) ≥ 1.5 or ≤ 0.667. Metabolic pathway analysis can provide valuable information to enhance the understanding of the underlying pathophysiology of HGSOC. In conclusion, the Q Exactive LC/MS/MS method validation-based plasma metabolomics approach may have potential as a convenient screening method for HGSOC and may be a method to monitor tumor recurrence in patients with HGSOC after surgery SIGNIFICANCE: High-grade serous ovarian cancer (HGSOC) has a high death rate and poor prognosis. The main causes of poor prognosis are asymptomatic early disease, no effective screening method at present, and advanced disease. Changes in cellular metabolism are characteristic of cancer, and plasma metabolome analysis can be used to identify biomarkers. In this study, we used Q Exactive liquid chromatography tandem mass spectrometry (LC-MS/MS, QE) to compare the differentiation between plasma samples (20 HGSOC samples and 20 normal samples). In total, we detected 124 metabolites, and an orthogonal partial least-squares-discriminant analysis (OPLS-DA) model was useful to distinguish HGSOC patients from healthy controls. Choline, 25-hydroxyvitamin D2, and sphingomyelin (d18:0/16:1(9Z) (OH))/SM(d18:0/16:1(9Z) (OH)) showed significantly differential plasma levels in HGSOC patients under the conditions of variable importance in projection (VIP) > 1, p < 0.05 using Student's t-test, and fold change (FC) ≥ 1.5 or ≤ 0.667. Metabolic pathway analysis can provide valuable information to enhance the understanding of the underlying pathophysiology of HGSOC. In conclusion, the Q Exactive LC/MS/MS method validation-based plasma metabolomics approach may have potential as a convenient screening method for HGSOC and may be a method to monitor tumor recurrence in patients with HGSOC after surgery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app