Add like
Add dislike
Add to saved papers

Characterization of ferredoxins involved in electron transfer pathways for nitrogen fixation implicates differences in electronic structure in tuning 2[4Fe4S] Fd activity.

Ferredoxins (Fds) are small proteins which shuttle electrons to pathways like biological nitrogen fixation. Physical properties tune the reactivity of Fds with different pathways, but knowledge on how these properties can be manipulated to engineer new electron transfer pathways is lacking. Recently, we showed that an evolved strain of Rhodopseudomonas palustris uses a new electron transfer pathway for nitrogen fixation. This pathway involves a variant of the primary Fd of nitrogen fixation in R. palustris, Fer1, in which threonine at position 11 is substituted for isoleucine (Fer1T11I ). To understand why this substitution in Fer1 enables more efficient electron transfer, we used in vivo and in vitro methods to characterize Fer1 and Fer1T11I . Electrochemical characterization revealed both Fer1 and Fer1T11I have similar redox transitions (-480 mV and - 550 mV), indicating the reduction potential was unaffected despite the proximity of T11 to an iron‑sulfur (FeS) cluster of Fer1. Additionally, disruption of hydrogen bonding around an FeS cluster in Fer1 by substituting threonine with alanine (T11A) or valine (T11V) did not increase nitrogenase activity, indicating that disruption of hydrogen bonding does not explain the difference in activity observed for Fer1T11I . Electron paramagnetic resonance spectroscopy studies revealed key differences in the electronic structure of Fer1 and Fer1T11I , which indicate changes to the high spin states and/or spin-spin coupling between the FeS clusters of Fer1. Our data implicates these electronic structure differences in facilitating electron flow and sets a foundation for further investigations to understand the connection between these properties and intermolecular electron transfer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app