Add like
Add dislike
Add to saved papers

Interconnected CoNi-Se Hollow Flakes through Reduced Graphene Oxide Sheets as a Cathode Material for Hybrid Supercapacitors.

Achieving a high energy density and long-cycle stability in energy storage devices demands competent electrochemical performance, often contingent on the innovative structural design of materials under investigation. This study explores the potential of transition metal selenide (TMSe), known for its remarkable activity, electronic conductivity, and stability in energy storage and conversion applications. The innovation lies in constructing hollow structures of binary metal selenide (CoNi-Se) at the surface of reduced graphene oxide (rGO) arranged in a three-dimensional (3D) morphology (CoNi-Se/rGO). The 3D interconnected rGO architecture works as a microcurrent collector, while porous CoNi-Se sheets originate the active redox centers. Electrochemical analysis of CoNi-Se/rGO based-electrode reveals a distinct faradic behavior, thereby resulting in a specific capacitance of 2957 F g-1 (1478.5 C g-1 ), surpassing the bare CoNi-Se with a value of 2149 F g-1 (1074.5 C g-1 ) at a current density of 1 A g-1 . Both materials exhibit exceptional high-rate capabilities, retaining 83% of capacitance at 10 A g-1 compared to 1 A g-1 . In a two-electrode coin cell system, the device achieves a high energy density of 73 Wh kg-1 at a power density of 1500 W kg-1 , stating an impressive 90.4% capacitance retention even after enduring 20,000 cycles. This study underscores the CoNi-Se/rGO composite's promise as a superior electrode material for high-performance energy storage applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app