Add like
Add dislike
Add to saved papers

Extremely Enhanced Photoluminescence in MoS 2 -Derived Quantum Sheets.

Molybdenum disulfide (MoS2 ) quantum sheets (QSs) are attractive for applications due to their tunable energy band structures and optical and electronic properties. The photoluminescence quantum yield (PLQY) of MoS2 QSs achieved by mechanical and liquid exfoliation and chemical vapor deposition is low. Some studies have reported that chemical treatment and elemental doping can improve the PLQY of transition metal dichalcogenides (TMDs), but this is limited by complex instruments and reactions. In this study, a heat treatment method based on a polar solvent is reported to improve the PLQY and photoluminescence (PL) intensity of MoS2 QSs at room temperature. The absolute PLQY of treated MoS2 QSs is increased to 18.5%, and the PL intensity is increased by a factor of 64. This method is also effective for tungsten disulfide (WS2 ) QSs. The PL enhancement of QSs is attributed to oxidation of the edges. Such passivation/deformation of MoS2 QSs facilitates the radiative route rather than the nonradiative route, resulting in extreme enhancement of the PL. Our work could provide novel insights/routes toward the PL enhancement of TMD QSs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app