Add like
Add dislike
Add to saved papers

A synergistic strategy based on active hydroxymethyl amine compounds and fucoidan for bioprosthetic heart valves with enhancing anti-coagulation and anti-calcification properties.

With an aging population, the patients with valvular heart disease (VHD) are growing worldwide, and valve replacement is a primary choice for these patients with severe valvular disease. Among them, bioprosthetic heart valves (BHVs), especially BHVs trough transcatheter aortic valve replacement, are widely accepted by patients on account of their good hemodynamics and biocompatibility. Commercial BHVs in clinic are prepared by glutaraldehyde cross-linked pericardial tissue with the risk of calcification and thrombotic complications. In the present study, a strategy combines improved hemocompatibility and anti-calcification properties for BHVs has been developed based on a novel non-glutaraldehyde BHV crosslinker hexakis(hydroxymethyl)melamine (HMM) and the anticoagulant fucoidan. Besides the similar mechanical properties and enhanced component stability compared to glutaraldehyde crosslinked PP (G-PP), the fucoidan modified HMM-crosslinked PPs (HMM-Fu-PPs) also exhibit significantly enhanced anticoagulation performance with a 72 % decrease in thrombus weight compared with G-PP in ex-vivo shunt assay, along with the superior biocompatibility, satisfactory anti-calcification properties confirmed by subcutaneous implantation. Owing to good comprehensive performance of these HMM-Fu-PPs, this simple and feasible strategy may offer a great potential for BHV fabrication in the future, and open a new avenue to explore more N-hydroxymethyl compound based crosslinker with excellent performance in the field of biomaterials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app