Add like
Add dislike
Add to saved papers

Differences in Lower-Extremity Joint Coordination During Two Landing Phases of a Drop Jump Task.

Motor Control 2024 March 9
The aim of the present study was to compare the differences in joint coordination patterns and variability in the lower extremity between the first and second landing phases of the drop jump. Eighteen resistance-trained men (age: 22.8 ± 1.8 years) performed drop jumps from a height of 0.40 m. An eight-camera motion capture system was utilized to record kinematic trajectories. Modified vector coding technique and circular statistics were used to determine the coordination pattern and variability of the following joint couples during the first and second landings: hip frontal-knee frontal (HfKf), hip sagittal-knee frontal (HsKf), hip sagittal-knee sagittal (HsKs), knee frontal-ankle frontal (KfAf), knee sagittal-ankle frontal (KsAf), and knee sagittal-ankle sagittal (KsAs). Statistical differences in the distribution frequencies of coupling angles and variability between the dominant and nondominant limbs across the two landing phases were compared using two-way repeated analysis of variance and Wilcoxon rank-sum tests. During the second landing phase, the proportion of HsKs, KfAf, and KsAs showing in-phase coordination was reduced but the proportion of KfAf and KsAs showing proximal joint (knee) coordination was increased (p < .05). Significant differences in bilateral asymmetry were observed only for the HfKf and KfAf patients (p < .05). HsKs, KfAf, and KsAf varied considerably during the second landing phase (p < .05). Joint coordination patterns during the second landing phase of the drop jump differed considerably from those during the first landing phase, thereby increasing the risk of knee and ankle injuries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app