Add like
Add dislike
Add to saved papers

MAVS promotes interferon signaling in RNA virus infection by ZUFSP-mediated chromatin regulation.

Mitochondria serve as a platform for innate immune signaling transduction, and mitochondrial antiviral signaling protein (MAVS) is essential for interferon-β (IFN-β) production and innate antiviral immunity against RNA viruses. Here, we identified zinc finger-containing ubiquitin peptidase 1 (ZUFSP/ZUP1) as a MAVS-interacting protein by using proximity-based labeling technology in HEK293T and found it could act as a positive regulator of the retinoic acid-inducible gene-I (RIG-I)-like receptors(RLRs), including RIG-I and interferon-induced helicase C domain-containing protein 1 (MDA5). ZUFSP deficiency markedly inhibited RNA virus-triggered induction of downstream antiviral genes, and Zufsp-deficient mice were more susceptible to RNA virus infection. After RNA virus infection,ZUFSP was translocated from cytoplasm to nucleus and interacted with chromatin remodeling complex to facilitate the opening of IFN-stimulated gene (ISG) loci for transcription. This study provides a critical mechanistic basis for MAVS-regulated chromatin remodeling to promote interferon signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app