Add like
Add dislike
Add to saved papers

Molecularly imprinted metal-organic frameworks assisted cloth and paper hybrid microfluidic devices for visual detection of gonyautoxin.

Marine algal toxin contamination is a major threat to human health. Thus, it is crucial to develop rapid and on-site techniques for detecting algal toxins. In this work, we developed colorimetric cloth and paper hybrid microfluidic devices (μCPADs) for rapid detection of gonyautoxin (GTX1/4) combined with molecularly imprinted polymers. In addition, the metal-organic frameworks (MOFs) composites were applied for this approach by their unique features. Guanosine serves as a dummy template for surface imprinting and has certain structural advantages in recognizing gonyautoxin. MOF@MIPs composites were able to perform a catalytic color reaction using hydrogen peroxide-tetramethylbenzidine for the detection of GTX1/4. The cloth-based sensing substrates were assembled on origami μPADs to form user-friendly, miniaturized colorimetric μCPADs. Combined with a smartphone, the proposed colorimetric μCPADs successfully achieved a low limit of detection of 0.65 μg/L within the range of 1-200 μg/L for rapid visual detection of GTX1/4. Moreover, the GTX1/4 of real shellfish and seawater samples were satisfactorily detected to indicate the application prospect of the μCPADs. The proposed method shows good potential in the low-cost, stable establishment of assays for the rapid detection of environmental biotoxins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app