Add like
Add dislike
Add to saved papers

Harnessing Mechanical Stress with Viscoelastic Biomaterials for Periodontal Ligament Regeneration.

The viscoelasticity of mechanically sensitive tissues such as periodontal ligaments (PDLs) is key in maintaining mechanical homeostasis. Unfortunately, PDLs easily lose viscoelasticity (e.g., stress relaxation) during periodontitis or dental trauma, which disrupt cell-extracellular matrix (ECM) interactions and accelerates tissue damage. Here, Pluronic F127 diacrylate (F127DA) hydrogels with PDL-matched stress relaxation rates and high elastic moduli are developed. The hydrogel viscoelasticity is modulated without chemical cross-linking by controlling precursor concentrations. Under cytomechanical loading, F127DA hydrogels with fast relaxation rates significantly improved the fibrogenic differentiation potential of PDL stem cells (PDLSCs), while cells cultured on F127DA hydrogels with various stress relaxation rates exhibited similar fibrogenic differentiation potentials with limited cell spreading and traction forces under static conditions. Mechanically, faster-relaxing F127DA hydrogels leveraged cytomechanical loading to activate PDLSC mechanotransduction by upregulating integrin-focal adhesion kinase pathway and thus cytoskeletal rearrangement, reinforcing cell-ECM interactions. In vivo experiments confirm that faster-relaxing F127DA hydrogels significantly promoted PDL repair and reduced abnormal healing (e.g., root resorption and ankyloses) in delayed replantation of avulsed teeth. This study firstly investigated how matrix nonlinear viscoelasticity influences the fibrogenesis of PDLSCs under mechanical stimuli, and it reveals the underlying mechanobiology, which suggests novel strategies for PDL regeneration.

Full text links

We have located open access text paper links.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app