Add like
Add dislike
Add to saved papers

The renal vasodilatation from β-adrenergic activation in vivo in rats is not driven by K V 7 and BK Ca channels.

The mechanisms behind renal vasodilatation elicited by stimulation of β-adrenergic receptors are not clarified. As several classes of K channels are potentially activated, we tested the hypothesis that KV7 and BKCa channels contribute to the decreased renal vascular tone in vivo and in vitro. Changes in renal blood flow (RBF) during β-adrenergic stimulation were measured in anaesthetized rats using an ultrasonic flow probe. The isometric tension of segmental arteries from normo- and hypertensive rats and segmental arteries from wild-type mice and mice lacking functional KV 7.1 channels was examined in a wire-myograph. The β-adrenergic agonist isoprenaline increased RBF significantly in vivo. Neither activation nor inhibition of KV 7 and BKCa channels affected the β-adrenergic RBF response. In segmental arteries from normo- and hypertensive rats, inhibition of KV 7 channels significantly decreased the β-adrenergic vasorelaxation. However, inhibiting BKCa channels was equally effective in reducing the β-adrenergic vasorelaxation. The β-adrenergic vasorelaxation was not different between segmental arteries from wild-type mice and mice lacking KV 7.1 channels. As opposed to rats, inhibition of KV 7 channels did not affect the murine β-adrenergic vasorelaxation. Although inhibition and activation of KV 7 channels or BKCa channels significantly changed baseline RBF in vivo, none of the treatments affected β-adrenergic vasodilatation. In isolated segmental arteries, however, inhibition of KV 7 and BKCa channels significantly reduced the β-adrenergic vasorelaxation, indicating that the regulation of RBF in vivo is driven by several actors in order to maintain an adequate RBF. Our data illustrates the challenge in extrapolating results from in vitro to in vivo conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app