Add like
Add dislike
Add to saved papers

Molecular rotors of naphthalimide and benzodithiophene as effective solvent polarity probes, temperature sensors, and for g-C 3 N 4 sensitization.

Acceptor-donor-acceptor (A-D-A) molecular rotors have drawn substantial attention for their applications in monitoring temperature variations within cellular microenvironments, biomimetic photocatalysis, and bioimaging. In this study, we have synthesized two novel rotor molecules, NBN1 and NBN2, by incorporating benzodithiophene (BDT) as the donor core and naphthalic anhydride/naphthalimide (NA/NI) moieties as acceptors using Pd-catalyzed Stille coupling reactions. These molecules exhibited distinct charge transfer (CT) behavior in both their absorption and emission spectra and displayed prominent emission solvatochromism. Notably, NBN1 exhibited better CT properties among the two molecules. Moreover, these A-D-A molecular rotors demonstrated remarkable sensitivities of their emission spectra toward solvent polarities and temperatures. Rotors NBN1 and NBN2 showed positive temperature coefficients with internal temperature sensitivities of 0.34% °C-1 and 0.13% °C-1 in chloroform, respectively, and thus hold significant promise for detecting temperature variations in cellular microenvironment. Furthermore, we have modeled these molecules with graphitic carbon nitride (g-C3 N4 ) to form composite systems and performed theoretical calculations to obtain valuable insights into their charge transfer behavior. Theoretical results suggested that these molecules have the potential to efficiently sensitize and modulate the band gap of g-C3 N4 and show potential for diverse photocatalytic applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app