Add like
Add dislike
Add to saved papers

Long-term impact of rearing substrates on susceptibility to insecticides and metabolic enzyme activities in the house fly Musca domestica.

Parasitology Research 2024 March 10
Musca domestica Linnaeus is a devastating insect pest of medical and veterinary importance with reports of resistance development to commonly used insecticides worldwide. Rearing substrates usually play a crucial role in determining susceptibility to insecticides and control of insect pests. The aim of the present study was to investigate the effect of five rearing substrates of M. domestica on its susceptibility to different insecticides and activities of metabolic enzymes. After 30 generations of rearing, susceptibility of M. domestica to tested insecticides, viz., malathion, pirimiphos-methyl, alpha-cypermethrin, deltamethrin, methomyl, propoxur, spinetoram, and chlorfenapyr had evident differences. Musca domestica reared on hen liver exhibited reduced susceptibility to all insecticides followed by the strain reared on poultry manure. However, M. domestica reared on milk-based diet showed the highest susceptibility to tested insecticides followed by the strain reared on manures of buffalo and horse. In addition, M. domestica reared on different substrates exhibited significant differences (p < 0.01) in the activities of glutathione S-transferase (GST), cytochrome P450-dependent monooxygenase, and carboxylesterase (CarE). Overall, hen liver and poultry manure strains exhibited higher activities of metabolic enzymes than those of the milk-based diet, buffalo, and horse manure strains. In conclusion, the data of the present study exhibited a significant effect of rearing substrates on the susceptibility to insecticides and activities of metabolic enzymes in M. domestica. These results could be helpful for the sustainable management of M. domestica on different hosts by selecting appropriate insecticides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app