Journal Article
Review
Add like
Add dislike
Add to saved papers

A Review on the Synthetic Methods towards Benzothienobenzothiophenes.

Benzothienobenzothiophenes (BTBTs) are a class of heteroacenes for which two distinct isomers have been identified depending on the locations of the fused benzothiophene motifs. Benzothienobenzothiophenes represent a class of heteroacenes demonstrating remarkable electronic properties that make them prominent in the realm of organic semiconductors. The structure of BTBTs, incorporating two sulfur atoms, contributes to their unique electronic characteristics, including narrow bandgaps and effective charge transport pathways. These compounds have gained attention for their high charge carrier mobility, making them desirable candidates for application in organic field-effect transistors (OFETs) and other electronic devices. Researchers have explored various synthetic strategies to design and tailor the properties of BTBT derivatives, leading to advancements in the development of high-performance organic semiconductors. Various synthetic techniques for benzothienobenzothiophenes have been reported in the literature including multistep synthesis, tandem transformations, electrochemical synthesis, and annulations. This review investigates the generality of each synthetic methodology by highlighting its benefits and drawbacks, and it analyses all synthetic approaches described for the creation of the two isomers. For the advantage of the readers, we have delved upon every mechanism of the reactions that are known. Finally, we have also summarized the synthetic methodologies that are used for making benzothienobenzothiophene analogues for material applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app