Add like
Add dislike
Add to saved papers

VO 2 /MoO 3 Heterojunctions Artificial Optoelectronic Synapse Devices for Near-Infrared Optical Communication.

Small 2024 March 9
Artificial optoelectronic synapses (OES) have attracted extensive attention in brain-inspired information processing and neuromorphic computing. However, OES at near-infrared wavelengths have rarely been reported, seriously limiting the application in modern optical communication. Herein, high-performance near-infrared OES devices based on VO2 /MoO3 heterojunctions are presented. The textured MoO3 films are deposited on the sputtered VO2 film by using the glancing-angle deposition technique to form a heterojunction device. Through tuning the oxygen defects in the VO2 film, the fabricated VO2 /MoO3 heterojunction exhibits versatile electrical synaptic functions. Benefiting from the highly efficient light harvesting and the unique interface effect, the photonic synaptic characteristics, mainly including the short/long-term plasticity and learning experience behavior are successfully realized at the O (1342 nm) and C (1550 nm) optical communication wavebands. Moreover, a single OES device can output messages accurately by converting light signals of the Morse code to distinct synaptic currents. More importantly, a 3 × 3 artificial OES array is constructed to demonstrate the impressive image perceiving and learning capabilities. This work not only indicates the feasibility of defect and interface engineering in modulating the synaptic plasticity of OES devices, but also provides effective strategies to develop advanced artificial neuromorphic visual systems for next-generation optical communication systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app