Add like
Add dislike
Add to saved papers

Self-healing and shape-memory polymers based on cellulose acetate matrix.

The creation of self-healing polymers with superior strength and stretchability from biodegradable materials is attracting increasing attention. In this study, we synthesized new biomass-derived cellulose acetate (CA) derivatives by ring-opening graft polymerization of δ-valerolactone followed by the introduction of ureidopyrimidinone (Upy) groups in the polymer side chains. Due to the semicrystalline aliphatic characteristics of the side chain poly(δ-valerolactone) (PVL) and quadruple hydrogen bonds formed by the Upy groups, the stretchability of the resulting polymers was significantly enhanced. Moreover, the shape memory ability and self-healing property (58.3% of self-healing efficiency) were successfully imparted to the polymer. This study demonstrates the great significance of using biomass sources to create self-healing polymers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app