Add like
Add dislike
Add to saved papers

Sirtuin 3 (SIRT3) improves sevoflurane-induced postoperative cognitive impairment by regulating mitochondrial oxidative stress.

One of the most prevalent co-operative disorders is postoperative cognitive dysfunction (POCD), however, its pathogenesis remains unclear. Thus, the aim of this work was to evaluate SIRT3's impact on cognitive decline in aged mice under anesthesia. Adeno-associated virus SIRT3 vector (AAV-SIRT3) or empty vector (AAV-VEH) was injected into the hippocampal region of aged mice after sevoflurane induction in order to upregulate the expression of SIRT3. The expression levels of SIRT3, pro-inflammatory cytokines, and apoptotic factors in hippocampus tissues were identified by PCR, Western blotting, TUNEL staining, and enzyme-linked immunosorbent assay (ELISA), and the cognitive function of mice was assessed. The SIRT3 expression was down-regulated in the hippocampal tissue of anesthetized mice. SIRT3 overexpression can improve the learning and memory ability, reduce the escape latency, and increase the residence time in the platform and platform crossing ability of mice. The overexpression of SIRT3 in hippocampus can reduce the oxidative stress response and inflammatory response induced by anesthesia in mice, increase the superoxide dismutase (SOD) expression level, and decrease the expression level of MDA and inflammatory factors in hippocampus. In addition, SIRT3 overexpression can also reduce anesthetic-induced hippocampal cell apoptosis. By reducing the hippocampus mitochondrial oxidative stress response, SIRT3 plays a significant role in the pathophysiology of POCD in mice and is a potential target for POCD treatment and diagnosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app