Add like
Add dislike
Add to saved papers

Measurement of Cerebral Metabolism Under Non-Chronic Hemodynamic Conditions.

BACKGROUND: Blood flow to the brain is a critical physiological function and is useful to monitor in critical care settings. Despite that, a surrogate is most likely measured instead of actual blood flow. Such surrogates include velocity measurements in the carotid artery and systemic blood pressure, even though true blood flow can actually be obtained using MRI and other modalities. Ultrasound is regularly used to measure blood flow and is, under certain conditions, able to provide quantitative volumetric blood flow in milliliters per minute. Unfortunately, most times the resulting flow data is not valid due to unmet assumptions (such as flow profile and angle correction). Color flow, acquired in three dimensions, has been shown to yield quantitative blood flow without any assumptions (3DVF).

METHODS: Here we are testing whether color flow can perform during physiological conditions common to severe injury. Specifically, we are simulating severe traumatic brain injury (epidural hematoma) as well as hemorrhagic shock with 50% blood loss. Blood flow was measured in the carotid artery of a cohort of 7 Yorkshire mix pigs (40-60 kg) using 3DVF (4D16L, LOGIQ 9, GE HealthCare, Milwaukee, WI, USA) and compared to an invasive flow meter (TS420, Transonic Systems Inc., Ithaca, NY, USA).

RESULTS: Six distinct physiological conditions were achieved: baseline, hematoma, baseline 2, hemorrhagic shock, hemorrhagic shock plus hematoma, and post-hemorrhage resuscitation. Mean cerebral oxygen extraction ratio varied from 40.6% ± 13.0% of baseline to a peak of 68.4% ± 15.6% during hemorrhagic shock. On average 3DVF estimated blood flow with a bias of -9.6% (-14.3% root mean squared error) relative to the invasive flow meter. No significant flow estimation error was detected during phases of flow reversal, that was seen in the carotid artery during traumatic conditions. The invasive flow meter showed a median error of -11.5% to 39.7%.

CONCLUSIONS: Results suggest that absolute volumetric carotid blood flow to the brain can be obtained and potentially become a more specific biomarker related to cerebral hemodynamics than current surrogate markers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app