Add like
Add dislike
Add to saved papers

Thermo-sensitive PLGA-PEG-PLGA hydrogel for sustained release of EGF to inhibit cervical cancer recurrence.

Overexpression of epidermal growth factor receptor (EGFR) in cancer is a key cause of recurrence of cervical cancer (CC). Although the EGF-EGFR pathway has been studied for decades, preventing tumor growth and recurrence caused by peripheral EGF remains a great challenge. In this work, a strategy is proposed to reduce the stimulation of high concentration EGF on tumor growth by using a thermo-sensitive hydrogel. The hydrogel is a triblock copolymer composed of polyethylene glycol (PEG) and poly (lactide glycolide) (PLGA). Based on the excellent temperature sensitivity, carrier capacity, swelling property and biocompatibility, the hydrogel can absorb the liquid around the tumor by injection and release EGF continuously at low concentration. The inhibitory effect of hydrogel on tumor growth is fully confirmed by an implanted tumor mouse model with human cervical cancer cell lines (HeLa) using triple-immunodeficient NCG mice. Compared with free EGF, the EGF-loaded hydrogel can hardly induce surface plasmon resonance (SPR) response, which proves that hydrogel can effectively weaken cytoskeleton rearrangement and inhibit cell migration by continuously releasing low concentration EGF. In addition, the EGF-loaded hydrogel can reduce cell proliferation by delaying the progress of cell cycle progression. Taken together, the hydrogel can effectively protect tumor microenvironment from the stimulation of high concentration EGF, delay cancer cellular processes and tumor growth, and thus providing an approach for inhibiting tumor recurrence of CC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app