Add like
Add dislike
Add to saved papers

An automatic glucose monitoring system based on periplasmic binding proteins for online bioprocess monitoring.

Biosensors & Bioelectronics 2024 Februrary 24
Glucose is one of the most vital nutrients in all living organisms, so its monitoring is critical in healthcare and bioprocessing. Enzymatic sensors are more popular as a technology solution to meet the requirement. However, periplasmic binding proteins have been investigated extensively for their high sensitivity, enabling microdialysis sampling to replace existing complex and expensive glucose monitoring solutions based on enzymatic sensors. The binding proteins are used as optical biosensors by introducing an environment-sensitive fluorophore to the protein. The biosensor's construction, characterization, and potential application are well studied, but a complete glucose monitoring system based on it is yet to be reported. This work documents the development of the first glucose sensor prototype based on glucose binding protein (GBP) for automatic and continuous glucose measurements. The development includes immobilizing the protein into reusable chips and a low-cost solution for non-invasive glucose sampling in bioprocesses using microdialysis sampling technique. A program was written in LabVIEW to accompany the prototype for the complete automation of measurement. The sampling technique allowed glucose measurements of a few micromolar to 260 mM glucose levels. A thorough analysis of the sampling mode and the device's performance was conducted. The reported measurement accuracy was 81.78%, with an RSD of 1.83%. The prototype was also used in online glucose monitoring of E. coli cell culture. The mode of glucose sensing can be expanded to the measurement of other analytes by switching the binding proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app