Add like
Add dislike
Add to saved papers

Serum Iron Overload Activates the SMAD Pathway and Hepcidin Expression of Hepatocytes via SMURF1.

BACKGROUND AND AIMS: Liver iron overload can induce hepatic expression of bone morphogenic protein (BMP) 6 and activate the BMP/SMAD pathway. However, serum iron overload can also activate SMAD but does not induce BMP6 expression. Therefore, the mechanisms through which serum iron overload activates the BMP/SMAD pathway remain unclear. This study aimed to clarify the role of SMURF1 in serum iron overload and the BMP/SMAD pathway.

METHODS: A cell model of serum iron overload was established by treating hepatocytes with 2 mg/mL of holo-transferrin (Holo-Tf). A serum iron overload mouse model and a liver iron overload mouse model were established by intraperitoneally injecting 10 mg of Holo-Tf into C57BL/6 mice and administering a high-iron diet for 1 week followed by a low-iron diet for 2 days. Western blotting and real-time PCR were performed to evaluate the activation of the BMP/SMAD pathway and the expression of hepcidin.

RESULTS: Holo-Tf augmented the sensitivity and responsiveness of hepatocytes to BMP6. The E3 ubiquitin-protein ligase SMURF1 mediated Holo-Tf-induced SMAD1/5 activation and hepcidin expression; specifically, SMURF1 expression dramatically decreased when the serum iron concentration was increased. Additionally, the expression of SMURF1 substrates, which are important molecules involved in the transduction of BMP/SMAD signaling, was significantly upregulated. Furthermore, in vivo analyses confirmed that SMURF1 specifically regulated the BMP/SMAD pathway during serum iron overload.

CONCLUSIONS: SMURF1 can specifically regulate the BMP/SMAD pathway by augmenting the responsiveness of hepatocytes to BMPs during serum iron overload.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app