Add like
Add dislike
Add to saved papers

Delay estimation for cortical-muscular interaction with Wavelet Coherence Time Lag.

BACKGROUND: Cortico-muscular coherence (CMC) between the cerebral cortex and muscle activity is an effective tool for studying neural communication in the motor control system. To accurately evaluate the coherence between electroencephalogram (EEG) and electromyogram (EMG) signals, it is necessary to accurately calculate the time delay between physiological signals to ensure signal synchronization.

NEW METHOD: We proposed a new delay estimation method, named wavelet coherence time lag (WCTL) and the significant increase areas (SIA) index as a measure of the specific region enhancement effect of the magnitude squared coherence (MSC) image.

RESULTS: The grip strength level had a small effect on the information transmission time from the cortex to the muscles, while the transmission time from the cortex to different muscle channels was different for the same task. A positive correlation was found between the grip strength level and the SIA index on the β band of C3-B and the α and β bands of C3-FDS.

COMPARISON WITH EXISTING METHOD: The WCTL method was found to accurately calculate the delay time even when the number of repeated segments was low in a simple motor control model, and the results were more accurate than the rate of voxels change (RVC) and CMC with time lag (CMCTL) methods.

CONCLUSIONS: The WCTL is an effective method for detecting the transmission time of information between the cortex and muscles, laying the foundation for future rehabilitation treatment for stroke patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app