Add like
Add dislike
Add to saved papers

Uncovering PPAR-γ agonists: An integrated computational approach driven by machine learning.

Peroxisome proliferator-activated receptor gamma (PPAR-γ) serves as a nuclear receptor with a pivotal function in governing diverse facets of metabolic processes. In diabetes, the prime physiological role of PPAR-γ is to enhance insulin sensitivity and regulate glucose metabolism. Although PPAR-γ agonists such as Thiazolidinediones are effective in addressing diabetes complications, it is vital to be mindful that they are associated with substantial side effects that could potentially give rise to health challenges. The recent surge in the discovery of selective modulators of PPAR-γ inspired us to formulate an integrated computational strategy by leveraging the promising capabilities of both machine learning and in silico drug design approaches. In pursuit of our objectives, the initial stage of our work involved constructing an advanced machine learning classification model, which was trained utilizing chemical information and physicochemical descriptors obtained from known PPAR-γ modulators. The subsequent application of machine learning-based virtual screening, using a library of 31,750 compounds, allowed us to identify 68 compounds having suitable characteristics for further investigation. A total of four compounds were identified and the most favorable configurations were complemented with docking scores ranging from -8.0 to -9.1 kcal/mol. Additionally, the compounds engaged in hydrogen bond interactions with essential conserved residues including His323, Leu330, Phe363, His449 and Tyr473 that describe the ligand binding site. The stability indices investigated herein for instance root-mean-square fluctuations in the backbone atoms indicated higher mobility in the region of orthosteric site in the presence of agonist with the deviation peaks in the range of 0.07-0.69 nm, signifying moderate conformational changes. The deviations at global level revealed that the average values lie in the range of 0.25-0.32 nm. In conclusion, our identified hits particularly, CHEMBL-3185642 and CHEMBL-3554847 presented outstanding results and highlighted the stable conformation within the orthosteric site of PPAR-γ to positively modulate the activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app