Add like
Add dislike
Add to saved papers

Investigating Oxidative Stress Associated with Myocardial Fibrosis by High-Fidelity Visualization and Accurate Evaluation of Mitochondrial GSH Levels.

Analytical Chemistry 2024 Februrary 30
Myocardial fibrosis is frequently accompanied by elevated levels of oxidative stress. Mitochondrial glutathione (mGSH), an essential biomolecule for maintaining redox homeostasis in mitochondria, could serve as an effective indicator for investigating the oxidative stress associated with myocardial fibrosis. In this study, a ratiometric fluorescent probe named Mito-NS6 , capable of being anchored in mitochondria and reversibly responding to GSH with an appropriate dissociation equilibrium constant, was rationally designed and utilized to visualize and evaluate the changes of mGSH levels caused by oxidative stress in myocardial fibrosis. Benefiting from the good performance of Mito-NS6 , we successfully achieved the quantification of mGSH in cardiac fibroblasts using a confocal laser-scanning microscope, revealing that salvianolic acid B (SalB) can act as an effective drug to alleviate myocardial fibrosis through depressing oxidative stress. Moreover, we employed ratio fluorescence imaging to track the fluctuation in GSH levels within a mice model of myocardial fibrosis induced by isoproterenol and found that myocardial fibrosis caused a higher oxidative stress level in myocardial tissue as well as heart organs. These results provide a novel point of view for the diagnosis and treatment of myocardial fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app