Add like
Add dislike
Add to saved papers

Enrichment of phosphopeptides by arginine-functionalized magnetic chitosan nanoparticles.

One of the most crucial and prevalent post-translational modifications is the phosphorylation of proteins. The study and examination of protein phosphorylation hold immense importance in comprehending disease mechanisms and discovering novel biomarkers. However, the inherent low abundance, low ionization efficiency, and coexistence with non phosphopeptides seriously affect the direct analysis of phosphopeptides by mass spectrometry. In order to tackle these problems, it is necessary to carry out selective enrichment of phosphopeptides prior to conducting mass spectrometry analysis. Herein, magnetic chitosan nanoparticles were developed by incorporating arginine, and were then utilized for phosphopeptide enrichment. A tryptic digest of β-casein was chosen as the standard substance. After enrichment, combined with matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS), the detection limit of the method was 0.4 fmol. The synthesized magnetic material demonstrated great potential in the detection of phosphopeptides in complex samples, as proven by its successful application in detecting phosphopeptides in skim milk and human saliva samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app