Add like
Add dislike
Add to saved papers

Polymeric Conductive Adhesive-Based Ultrathin Epidermal Electrodes for Long-Term Monitoring of Electrophysiological Signals.

Advanced Materials 2024 Februrary 30
Electrophysiology, exploring vital electrical phenomena in living organisms, anticipates broader integration into daily life through wearable devices and epidermal electrodes. However, addressing the challenges of the electrode durability and motion artifacts is essential to enable continuous and long-term biopotential signal monitoring, presenting a hurdle for its seamless implementation in daily life. To address these challenges, an ultrathin polymeric conductive adhesive, poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)/polyvinyl alcohol/d-sorbitol (PPd) electrode with enhanced adhesion, stretchability, and skin conformability, is presented. The skin conformability and stability of electrodes is designed by theoretical criteria obtained by mechanical analysis. Thus, impedance stability is obtained over 1-week of daily life, and the PPd electrode addresses the challenges related to durability during prolonged usage. Proving stability in electromyography (EMG) signals during high-intensity exercise, the wireless PPd measurement system exhibits high signal-to-noise ratio (SNR) signals even in situations involving significant and repetitive skin deformation. Throughout continuous 1 week-long electrocardiogram (ECG) monitoring in daily life, the system consistently preserves signal quality, underscoring the heightened durability and applicability of the PPd measurement system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app