Add like
Add dislike
Add to saved papers

Hemodynamical behavior analysis of anemic, diabetic, and healthy blood flow in the carotid artery.

Heliyon 2024 Februrary 30
The influence of blood rheology on hemodynamic parameters is investigated using Computational Fluid Dynamics on blood flow through the human carotid artery. We performed three-dimensional modeling and simulation to study blood flow through the carotid artery, which is divided into internal and exterior parts with a decreased radius. The blood flow was classified as basic pulsatile to simulate the human heart's rhythmic pulses. For hemodynamic modeling viscosity of the fluid, the Carreau model was utilized with four distinct blood instances: Anemic, diabetic, and two healthy blood types. The boundary conditions with Carreau viscosity were applied using the Ansys Fluent simulator, and the governing equations were solved using the finite volume technique. Different time steps were tested for their impact on wall deformation, strain rate, blood velocity, pressure, wall shear, and skin friction coefficient. The hemodynamical parameters were calculated using many cross-sectional planes along the artery. Finally, the impact of the four types of blood cases listed above was investigated, and we discovered that each blood case has a substantial impact on blood velocity, pressure, wall shear, and strain rate along the artery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app