Add like
Add dislike
Add to saved papers

Retrieval of chromophore concentration changes in a digital human head model using analytical mean partial pathlengths of photons.

SIGNIFICANCE: Continuous-wave functional near-infrared spectroscopy has proved to be a valuable tool for assessing hemodynamic activity in the human brain in a non-invasively and inexpensive way. However, most of the current processing/analysis methods assume the head is a homogeneous medium, and hence do not appropriately correct for the signal coming from the scalp. This effect can be reduced by considering light propagation in a layered model of the human head, being the Monte Carlo (MC) simulations the gold standard to this end. However, this implies large computation times and demanding hardware capabilities.

AIM: In this work, we study the feasibility of replacing the homogeneous model and the MC simulations by means of analytical multilayered models, combining in this way, the speed and simplicity of implementation of the former with the robustness and accuracy of the latter.

APPROACH: Oxy- and deoxyhemoglobin (HbO and HbR, respectively) concentration changes were proposed in two different layers of a magnetic resonance imaging (MRI)-based meshed model of the human head, and then these changes were retrieved by means of (i) a typical homogeneous reconstruction and (ii) a theoretical layered reconstruction.

RESULTS: Results suggest that the use of analytical models of light propagation in layered models outperforms the results obtained using traditional homogeneous reconstruction algorithms, providing much more accurate results for both, the extra- and the cerebral tissues. We also compare the analytical layered reconstruction with MC-based reconstructions, achieving similar degrees of accuracy, especially in the gray matter layer, but much faster (between 4 and 5 orders of magnitude).

CONCLUSIONS: We have successfully developed, implemented, and validated a method for retrieving chromophore concentration changes in the human brain, combining the simplicity and speed of the traditional homogeneous reconstruction algorithms with robustness and accuracy much more similar to those provided by MC simulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app