Add like
Add dislike
Add to saved papers

Recent Advancements on Sustainable Electrochemical Water Splitting Hydrogen Energy Applications based on Nanoscale Transition Metal Oxides (TMO) Substrates.

Chemistry, An Asian Journal 2024 Februrary 29
The development of green hydrogen generation technologies is increasingly crucial to meeting the growing energy demand for sustainable and environmentally acceptable resources. Many obstacles in the advancement of electrodes prevented water electrolysis, long thought to be an eco-friendly method of producing hydrogen gas with no carbon emissions, from coming to fruition. Because of their great electrical conductivity, maximum supporting capacity, ease of modification in valence states, durability in hard environments, and high redox characteristics, transition metal oxides (TMOs) have recently captured a lot of interest as potential cathodes and anodes. Electrochemical water splitting is the subject of this investigation, namely the role of transition metal oxides as both active and supportive sites. It has suggested various approaches for the logical development of electrode materials based on TMOs. These include adjusting the electronic state, altering the surface structure to control its resistance to air and water, improving the flow of energy and matter, and ensuring the stability of the electrocatalyst in challenging conditions. Here, it has been covered the latest findings in electrocatalysis of the Oxygen Evolution Reaction (OER) and Hydrogen Evaluation Reaction (HER), as well as some of the specific difficulties, opportunities, and current research prospects in this field.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app