Journal Article
Review
Add like
Add dislike
Add to saved papers

Kisspeptin and neurokinin B neuroendocrine pathways in the control of human ovulation.

The roles of initially kisspeptin and subsequently neurokinin B pathways in the regulation of human reproduction through the control of GnRH secretion were first identified 20 years ago, as essential for the onset of puberty in both boys and girls. Within that short time we already now have the first licence for clinical use for a neurokinin antagonist in a related indication, for menopausal vasomotor symptoms. Between these two markers of the start and end of the reproductive lifespan, it is clear that these pathways underlie many of the aspects of the hypothalamic regulation of reproduction which had hitherto been enigmatic. In this review, we describe the data currently available from studies designed to elucidate the roles of kisspeptin and neurokinin B in human ovarian function, specifically the regulation of follicle development leading up to ovulation, and in the control of the mid-cycle GnRH/LH surge that triggers ovulation. These studies, undertaken with only very limited pharmacological tools, provide evidence that the neurokinin B pathway is important in controlling the hypothalamic contribution to the precise gonadotropic drive to the ovary that is necessary for mono-ovulation, whereas the switch from negative to positive estrogenic feedback results in kisspeptin-mediated increased GnRH secretion. Potential therapeutic opportunities in conditions characterised by disordered hypothalamic/pituitary function, polycystic ovary syndrome, and functional hypothalamic amenorrhoea, and in the induced LH surge that is a necessary part of IVF treatment are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app