Add like
Add dislike
Add to saved papers

Ecological role of reed belts in lakeside zone: Impacts on nutrient retention and bacterial community assembly during Hydrilla verticillata decomposition.

Reed belts acting as basic nutrient filters are important parts of lake buffer riparian zones. However, little is known about their impacts on nutrient release and bacterial community during plant litter decomposition. In this study, a field experiment was conducted in west-lake Taihu to monitor the changes in nutrients, bacterial enzymatic activities, and bacterial community in plant debris during Hydrilla verticillata (H. verticillata) decomposition in open water (HvC) and reed belts (HvL) area for 126 days. We found that there was lower temperature but higher nutrient concentrations in overlying water in HvL than HvC. Partial least squares path modeling revealed that environmental parameters in overlying water had important impacts on bacterial activities and nutrient release (such as alkaline phosphatase, cellulase, and soluble sugar) and therefore affected dissolved organic matter components in plant debris. According to Illumina sequencing, 46,003 OTUs from 10 dominant phyla were obtained and Shannon index was higher in HvL than HvC at the same sampling time. Neutral community model explained 49% of bacterial community variance and immigration rate by the estimate of dispersal in HvC (Nm: 27,154) and HvL (Nm: 25,765), respectively. Null model showed stochastic factors governed the bacterial community assembly in HvC (66.67%) and HvL (87.28%). TP and pH were key factors affecting the bacterial community structure at the phylum level. More hubs and complex interactions among bacteria were observed in HvL than HvC. Function analysis showed bacterial community had important role in carbon, organic phosphorus, and nitrogen removal but phosphorus-starvation was detected in debris of H. verticillata. This study provides useful information for understanding the changes in nutrients and bacterial community in litter during H. verticillata decomposition and highlights the role of reed belts on retained plant litter to protect lake from pollution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app