Add like
Add dislike
Add to saved papers

Gonadotropin upregulates intraovarian calpains-1 and -2 during ovarian follicular recruitment in the SD rat model.

Reproductive Biology 2024 Februrary 25
Calpain role has been shown in the cumulus cell-oocyte complexes and, corpus luteum. We investigated the association of calpains-1 and -2 in ovarian folliculogenesis using the Sprague-Dawley (SD) rat model and steroidogenesis in the human granulosa cells (hGCs). We induced PCOS in 42-day-old SD rats by letrozole oral gavage for 21 days. Premature ovarian failure (POF) was induced in 21-day-old SD rats by 4-vinylcyclohexene diepoxide (VCD). Ovulation and ovarian hyperstimulatory (OHS) syndrome were induced by pregnant mare gonadotropin (PMSG) + human chorionic gonadotropin (hCG) treatments in 21 days SD rats, respectively. Steroidogenesis is stimulated in human granulosa cells (hGCs) by forskolin and the response of 17-beta-estradiol (E2) on calpains expression was checked in hGCs. The protein expression by immunoblotting and activity by biochemical assay of calpains-1 and -2 showed an oscillating pattern in the ovarian cycle. PMSG-induced follicular recruitment showed upregulation of calpains-1 and -2, but with no change during ovarian function cessation (POF). Upregulated calpain-2 expression and calpain activity was found in the hCG +PMSG-induced ovulation. Letrozole-induced PCOS showed downregulation of calpain-1, but upregulation of calpain-2. PMSG+hCG-induced OHS led to the upregulation of calpain-1. Letrozole and metformin separately increased the expression level of calpains-1 and -2 in the hGCs during luteinization. In conclusion, the expression levels of calpains -1 and -2 are increased with ovarian follicular recruitment by PMSG and calpain-1 is decreased in the PCOS condition, and letrozole and metformin upregulate the expression of calpains-1 and -2 during luteinization in the hGCs possibly via E2 action.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app