Add like
Add dislike
Add to saved papers

Pan-Cancer Analysis Reveals Disulfidoptosis-Associated Genes as Promising Immunotherapeutic Targets: Insights Gained from Bulk Omics and Single-Cell Sequencing Validation.

Biomedicines 2024 January 25
Disulfidoptosis, a novel form of cell death, is distinct from other well-known cell death mechanisms. Consequently, a profound investigation into disulfidoptosis elucidates the fundamental mechanisms underlying tumorigenesis, presenting promising avenues for therapeutic intervention. Comprehensive analysis of disulfidoptosis-associated gene (DRG) expression in pan cancer utilized TCGA, GEO, and ICGC datasets, including survival and Cox-regression analyses for prognostic evaluation. We analyzed the association between DRG expression and both immune cell infiltration and immune-related gene expression using the ESTIMATE and TISDIB datasets. We obtained our single-cell RNA sequencing (scRNA-seq) data from the GEO repository. Subsequently, we assessed disulfidoptosis activity in various cell types. Evaluation of immune cell infiltration and biological functions was analyzed via single-sample gene set enrichment (ssGSEA) and gene set variation analysis (GSVA). For in vitro validation experiments, the results from real-time PCR (RT-qPCR) and Western blot were used to explore the expression of SLC7A11 in hepatocellular carcinoma (HCC) tissues and different cancer cell lines, while siRNA-mediated SLC7A11 knockdown effects on HCC cell proliferation and migration were examined. Expression levels of DRGs, especially SLC7A11, were significantly elevated in tumor samples compared to normal samples, which was associated with poorer outcomes. Except for SLC7A11, DRGs consistently exhibited high CNV and SNV rates, particularly in HCC. In various tumors, DRGs were negatively associated with DNA promoter methylation. TME analyses further illustrated a negative correlation of DRG expression with ImmuneScore and StromalScore and a positive correlation with tumor purity. Our analysis unveiled diverse cellular subgroups within HCC, particularly focusing on Treg cell populations, providing insights into the intricate interplay of immune activation and suppression within the tumor microenvironment (TME). These findings were further validated through RT-qPCR, Western blot analyses, and immunohistochemical analyses. Additionally, the knockdown of SLC7A11 induced a suppression of proliferation and migration in HCC cell lines. In conclusion, our comprehensive pan-cancer analysis research has demonstrated the significant prognostic and immunological role of disulfidoptosis across a spectrum of tumors, notably HCC, and identified SLC7A11 as a promising therapeutic target.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app