Add like
Add dislike
Add to saved papers

Menstrual Blood-Derived Endometrial Stem Cell Transplantation Improves Male Reproductive Dysfunction in T1D Mice by Enhancing Antioxidative Capacity.

Reproductive Sciences 2024 Februrary 24
Diabetes is known to negatively affect male reproduction. Recent clinical results have confirmed that mesenchymal stem cell (MSC)-based therapies are safe and effective for the treatment of diabetes. However, the effect and potential mechanism through which MSC transplantation improves diabetes-derived male reproductive dysfunction are still unknown. In the present study, we first established a male T1D mouse model through intraperitoneal injection of streptozotocin for five consecutive days. Subsequently, we evaluated the blood glucose levels, fertility, and histology and immunology of the pancreas, testes, and penis of T1D mice with or without transplantation of menstrual blood-derived endometrial stem cells (MenSCs) or umbilical cord mesenchymal stem cells (UCMSCs). Glucose was added to the medium in which the Leydig cells were cultured to imitate high glucose-injured cell viability. Subsequently, we evaluated the cellular viability, ROS levels, and mitochondrial membrane potential of Leydig cells treated with or without MenSC-conditioned medium (MenSC-CM) using a CCK8 assay, immunofluorescence, and flow cytometry. The targeted proteins are involved in the potential mechanism underlying MenSC-derived improvements, which was further validated via Western blotting. Collectively, our results indicated that MenSC transplantation significantly ameliorated reproductive dysfunction in male T1D mice by enhancing cellular antioxidative capacity and promoting angiogenesis. This study provides solid evidence and support for the application of MSCs to improve diabetes-induced male reproductive dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app