Add like
Add dislike
Add to saved papers

The underlying molecular mechanism of ciliated epithelium dysfunction and TGF-β signaling in children with congenital pulmonary airway malformations.

Scientific Reports 2024 Februrary 24
The aim of this study was to investigate the variation in gene expression in the complete transcripts of Congenitalpulmonary airwaymalformation (CPAM) of the lung using Next Generation Sequencing (NGS) technology. There were 20 cases involving children with CPAM were used for selection of study sample. NGS was used to establish RNA-Seq libraries for the two groups of samples separately, and both groups were conducted to differential expression analysis and Gene Ontology (GO) functional enrichment analysis. The pathways of the differential genes were analyzed to find the enriched target pathways. A total of 592 genes were expressed with significant differences (CPAM vs. normal tissue, P < 0.05). GO functional analysis of DEGs indicated that abnormal ciliary function played a role in the development of CPAM. Subsequently, analysis of these genes pathways showed the TGF-β signaling pathway was significantly enriched. Finally, the results of immunohistochemical analysis of some DEGs showed that a significant reduction in the expression of SMAD6, a gene related to the TGF-β signaling pathway, led to abnormal activation of the pathway. TGF-β signaling pathway involved in the evolution of the disease obtained by DEGs enrichment pathway analysis. SMAD6, a gene involved in this pathway, might be a potential biomarker for the diagnosis and treatment of CPAM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app