Add like
Add dislike
Add to saved papers

Brain-like illusion produced by Skye's Oblique Grating in deep neural networks.

The analogy between the brain and deep neural networks (DNNs) has sparked interest in neuroscience. Although DNNs have limitations, they remain valuable for modeling specific brain characteristics. This study used Skye's Oblique Grating illusion to assess DNNs' relevance to brain neural networks. We collected data on human perceptual responses to a series of visual illusions. This data was then used to assess how DNN responses to these illusions paralleled or differed from human behavior. We performed two analyses:(1) We trained DNNs to perform horizontal vs. non-horizontal classification on images with bars tilted different degrees (non-illusory images) and tested them on images with horizontal bars with different illusory strengths measured by human behavior (illusory images), finding that DNNs showed human-like illusions; (2) We performed representational similarity analysis to assess whether illusory representation existed in different layers within DNNs, finding that DNNs showed illusion-like responses to illusory images. The representational similarity between real tilted images and illusory images was calculated, which showed the highest values in the early layers and decreased layer-by-layer. Our findings suggest that DNNs could serve as potential models for explaining the mechanism of visual illusions in human brain, particularly those that may originate in early visual areas like the primary visual cortex (V1). While promising, further research is necessary to understand the nuanced differences between DNNs and human visual pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app