Add like
Add dislike
Add to saved papers

Implemented classification techniques for osteoporosis using deep learning from the perspective of healthcare analytics.

BACKGROUND: Osteoporosis is a medical disorder that causes bone tissue to deteriorate and lose density, increasing the risk of fractures. Applying Neural Networks (NN) to analyze medical imaging data and detect the presence or severity of osteoporosis in patients is known as osteoporosis classification using Deep Learning (DL) algorithms. DL algorithms can extract relevant information from bone images and discover intricate patterns that could indicate osteoporosis.

OBJECTIVE: DCNN biases must be initialized carefully, much like their weights. Biases that are initialized incorrectly might affect the network's learning dynamics and hinder the model's ability to converge to an ideal solution. In this research, Deep Convolutional Neural Networks (DCNNs) are used, which have several benefits over conventional ML techniques for image processing.

METHOD: One of the key benefits of DCNNs is the ability to automatically Feature Extraction (FE) from raw data. Feature learning is a time-consuming procedure in conventional ML algorithms. During the training phase of DCNNs, the network learns to recognize relevant characteristics straight from the data. The Squirrel Search Algorithm (SSA) makes use of a combination of Local Search (LS) and Random Search (RS) techniques that are inspired by the foraging habits of squirrels.

RESULTS: The method made it possible to efficiently explore the search space to find prospective values while using promising areas to refine and improve the solutions. Effectively recognizing optimum or nearly optimal solutions depends on balancing exploration and exploitation. The weight in the DCNN is optimized with the help of SSA, which enhances the performance of the classification.

CONCLUSION: The comparative analysis with state-of-the-art techniques shows that the proposed SSA-based DCNN is highly accurate, with 96.57% accuracy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app