Add like
Add dislike
Add to saved papers

HBNET: A blended ensemble model for the detection of cardiovascular anomalies using phonocardiogram.

BACKGROUND: Cardiac diseases are highly detrimental illnesses, responsible for approximately 32% of global mortality [1]. Early diagnosis and prompt treatment can reduce deaths caused by cardiac diseases. In paediatric patients, it is challenging for paediatricians to identify functional murmurs and pathological murmurs from heart sounds.

OBJECTIVE: The study intends to develop a novel blended ensemble model using hybrid deep learning models and softmax regression to classify adult, and paediatric heart sounds into five distinct classes, distinguishing itself as a groundbreaking work in this domain. Furthermore, the research aims to create a comprehensive 5-class paediatric phonocardiogram (PCG) dataset. The dataset includes two critical pathological classes, namely atrial septal defects and ventricular septal defects, along with functional murmurs, pathological and normal heart sounds.

METHODS: The work proposes a blended ensemble model (HbNet-Heartbeat Network) comprising two hybrid models, CNN-BiLSTM and CNN-LSTM, as base models and Softmax regression as meta-learner. HbNet leverages the strengths of base models and improves the overall PCG classification accuracy. Mel Frequency Cepstral Coefficients (MFCC) capture the crucial audio signal characteristics relevant to the classification. The amalgamation of these two deep learning structures enhances the precision and reliability of PCG classification, leading to improved diagnostic results.

RESULTS: The HbNet model exhibited excellent results with an average accuracy of 99.72% and sensitivity of 99.3% on an adult dataset, surpassing all the existing state-of-the-art works. The researchers have validated the reliability of the HbNet model by testing it on a real-time paediatric dataset. The paediatric model's accuracy is 86.5%. HbNet detected functional murmur with 100% precision.

CONCLUSION: The results indicate that the HbNet model exhibits a high level of efficacy in the early detection of cardiac disorders. Results also imply that HbNet has the potential to serve as a valuable tool for the development of decision-support systems that aid medical practitioners in confirming their diagnoses. This method makes it easier for medical professionals to diagnose and initiate prompt treatment while performing preliminary auscultation and reduces unnecessary echocardiograms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app