Add like
Add dislike
Add to saved papers

XylR Overexpression in Escherichia coli Alleviated Transcriptional Repression by Arabinose and Enhanced Xylitol Bioproduction from Xylose Mother Liquor.

Xylitol is a polyol widely used in food, pharmaceuticals, and light industries. It is currently produced through the chemical catalytic hydrogenation of xylose and generates xylose mother liquor as a substantial byproduct in the procedure of xylose extraction. If xylose mother liquor could also be efficiently bioconverted to xylitol, the greenness and atom economy of xylitol production would be largely improved. However, xylose mother liquor contains a mixture of glucose, xylose, and arabinose, raising the issue of carbon catabolic repression in its utilization by microbial conversion. Targeting this challenge, the transcriptional activator XylR was overexpressed in a previously constructed xylitol-producing E. coli strain CPH. The resulting strain CPHR produced 16.61 g/L of xylitol in shake-flask cultures from the mixture of corn cob hydrolysate and xylose mother liquor (1:1, v/v) with a xylose conversion rate of 90.1%, which were 2.23 and 2.15 times higher than the starting strain, respectively. Furthermore, XylR overexpression upregulated the expression levels of xylE, xylF, xylG, and xylH genes by 2.08-2.72 times in arabinose-containing medium, suggesting the alleviation of transcriptional repression of xylose transport genes by arabinose. This work lays the foundation for xylitol bioproduction from xylose mother liquor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app