Add like
Add dislike
Add to saved papers

Tumor-acquired somatic mutation affects conformation to abolish ABCG2-mediated drug resistance.

ABCG2 is an important ATP-binding cassette transporter impacting the absorption and distribution of over 200 chemical toxins and drugs. ABCG2 also reduces the cellular accumulation of diverse chemotherapeutic agents. Acquired somatic mutations in the phylogenetically conserved amino acids of ABCG2 might provide unique insights into its molecular mechanisms of transport. Here, we identify a tumor-derived somatic mutation (Q393K) that occurs in a highly conserved amino acid across mammalian species. This ABCG2 mutant seems incapable of providing ABCG2-mediated drug resistance. This was perplexing because it is localized properly and retained interaction with substrates and nucleotides. Using a conformationally sensitive antibody, we show that this mutant appears "locked" in a non-functional conformation. Structural modeling and molecular dynamics simulations based on ABCG2 cryo-EM structures suggested that the Q393K interacts with the E446 to create a strong salt bridge. The salt bridge is proposed to stabilize the inward-facing conformation, resulting in an impaired transporter that lacks the flexibility to readily change conformation, thereby disrupting the necessary communication between substrate binding and transport.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app