Add like
Add dislike
Add to saved papers

Leaching of tire particles and simultaneous biodegradation of leachables.

Water Research 2024 Februrary 16
The fate of organic compounds released from tire wear particle (TWP) in the aquatic environment is still poorly understood. This is especially true near sources where biotic and abiotic transformation and leaching from TWP are simultaneous and competing processes. To address this knowledge-gap an experiment was performed, allowing for biodegradation (a) during the leaching from a suspension of cryo-milled tire tread (CMTT) and (b) subsequent to leaching. Besides measuring the Dissolved Organic Carbon (DOC) content, 19 tire-related chemicals were quantified, and non-target screening was performed by LC-HRMS. The non-inoculated control experiment exhibited a DOC of up to 4 mg g-1 , with up to 700 µg g-1 of 1,3-diphenylguanidine (DPG) as the most prominent compound, followed by three benzothiazoles (2-mercaptobenzothiazole (2-MBT), 2-hydroxybenzothiazole (2-OHBT) and benzothiazole-2-sulfonic acid (BTSA); 50 µg g-1 each) and 4-hydroxydiphenylamine (4-HDPA) (50 µg g-1 ). Biodegradation reduced the DOC by 88 % and the concentration of most organic compounds by more than 85 %. At the end of the experiment hexamethoxymethylmelamine (HMMM) was the most prominent single compounds (18 µg g-1 ). Non-target screening showed a more complex picture. Another 25 transformation products (TPs) of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PPD) and 44 TPs and derivatives related to DPG were detected in solution, of which 11 and 28 were still present after or formed by biodegradation, respectively. Of these 39 TPs and derivatives, 31 could be detected in road runoff samples. This study provides a more comprehensive picture of the leachables of tire particles that are of environmental relevance. It also outlines that derivatives of tire additives formed during tire production and use may deserve more attention as leachables. The large extent of biodegradation of tire leachables suggests that settling ponds may be a useful treatment option for road runoff.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app