Add like
Add dislike
Add to saved papers

Hound: a novel tool for automated mapping of genotype to phenotype in bacterial genomes assembled de novo.

Increasing evidence suggests that microbial species have a strong within species genetic heterogeneity. This can be problematic for the analysis of prokaryote genomes, which commonly relies on a reference genome to guide the assembly process. Differences between reference and sample genomes will therefore introduce errors in final assembly, jeopardizing the detection from structural variations to point mutations-critical for genomic surveillance of antibiotic resistance. Here we present Hound, a pipeline that integrates publicly available tools to assemble prokaryote genomes de novo, detect user-given genes by similarity to report mutations found in the coding sequence, promoter, as well as relative gene copy number within the assembly. Importantly, Hound can use the query sequence as a guide to merge contigs, and reconstruct genes that were fragmented by the assembler. To showcase Hound, we screened through 5032 bacterial whole-genome sequences isolated from farmed animals and human infections, using the amino acid sequence encoded by blaTEM-1, to detect and predict resistance to amoxicillin/clavulanate which is driven by over-expression of this gene. We believe this tool can facilitate the analysis of prokaryote species that currently lack a reference genome, and can be scaled either up to build automated systems for genomic surveillance or down to integrate into antibiotic susceptibility point-of-care diagnostics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app