Add like
Add dislike
Add to saved papers

CT-derived radiomics predict the growth rate of renal tumours in von Hippel-Lindau syndrome.

Clinical Radiology 2024 Februrary 9
AIM: To predict renal tumour growth patterns in von Hippel-Lindau syndrome by utilising radiomic features to assist in developing personalised surveillance plans leading to better patient outcomes.

MATERIALS AND METHODS: The study evaluated 78 renal tumours in 55 patients with histopathologically-confirmed clear cell renal cell carcinomas (ccRCCs), which were segmented and radiomics were extracted. Volumetric doubling time (VDT) classified the tumours into fast-growing (VDT <365 days) or slow-growing (VDT ≥365 days). Volumetric and diametric growth analyses were compared between the groups. Multiple logistic regression and random forest classifiers were used to select the best features and models based on their correlation and predictability of VDT.

RESULTS: Fifty-five patients (mean age 42.2 ± 12.2 years, 27 men) with a mean time difference of 3.8 ± 2 years between the baseline and preoperative scans were studied. Twenty-five tumours were fast-growing (low VDT, i.e., <365 days), and 53 tumours were slow-growing (high VDT, i.e., ≥365 days). The median volumetric and diametric growth rates were 1.71 cm3 /year and 0.31 cm/year. The best feature using univariate analysis was wavelet-HLL_glcm_ldmn (area under the receiver operating characteristic [ROC] curve [AUC] of 0.80, p<0.0001), and with the random forest classifier, it was log-sigma-0-5-mm-3D_glszm_ZonePercentage (AUC: 79). The AUC of the ROC curves using multiple logistic regression was 0.74, and with the random forest classifier was 0.73.

CONCLUSION: Radiomic features correlated with VDT and were able to predict the growth pattern of renal tumours in patients with VHL syndrome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app