Add like
Add dislike
Add to saved papers

Nanoplastics and chrysene pollution: Potential new triggers for nonalcoholic fatty liver disease and hepatitis, insights from juvenile Siniperca chuatsi.

Nanopolystyrene (NP) and chrysene (CHR) are ubiquitous contaminants in the natural environment; however, research on their hepatotoxicity and associated adverse effects remains relatively inadequate. The present study aimed to investigate the hepatotoxic effects of NP and/or CHR at environmentally relevant concentrations, as well as the underlying molecular mechanisms, in juvenile Siniperca chuatsi (mandarin fish). After a 21-day exposure period, the livers of exposed S. chuatsi exhibited macrostructural and microstructural damage accompanied by oxidative stress. Importantly, our study provides the first evidence that NP exposure leads to the development of nonalcoholic fatty liver disease (NAFLD) and hepatitis in S. chuatsi. Similarly, CHR exposure has also been found, for the first time, to cause hepatic sinusoidal dilatation (HSD) and hepatitis. Exposure to the combination of NP and CHR alleviated the symptoms of NAFLD, HSD, and hepatitis. Furthermore, our comprehensive multi-omic analysis revealed that the pathogenesis of NP-induced NAFLD was mainly due to induction of the triglyceride synthesis pathway and inhibition of the very-low-density lipoprotein secretion process. CHR induced HSD primarily through a reduction in vasoprotective ability and smooth muscle contractility. Hepatitis was induced by activation of the JAK-STAT/NF-kappa B signaling pathways, which upregulated the expression of inflammation-specific genes. Collectively, results of this study offer novel insight into the multiple hepatotoxicity endpoints of NP and/or CHR exposure at environmentally relevant concentrations in organisms, and highlight the importance of nanoplastic/CHR pollution for liver health.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app